Entropy Splitting for High-Order Numerical Simulation of Compressible Turbulence
نویسندگان
چکیده
A stable high order numerical scheme for direct numerical simulation (DNS) of shock-free compressible turbulence is presented. The method is applicable to general geometries. It contains no upwinding, artificial dissipation, or filtering. Instead the method relies on the stabilizing mechanisms of an appropriate conditioning of the governing equations and the use of compatible spatial difference operators for the interior points (interior scheme) as well as the boundary points (boundary scheme). An entropy splitting approach splits the inviscid flux derivatives into conservative and non-conservative portions. The spatial difference operators satisfy a summation-by-parts condition leading to a stable scheme (combined interior and boundary schemes) for the initial boundary value problem using a generalized energy estimate. A Laplacian formulation of the viscous and heat conduction terms on the right hand side of the Navier-Stokes equations is used to ensure that any tendency to odd-even decoupling associated with central schemes can be countered by the fluid viscosity. The resulting methods are able to minimize the spurious high frequency oscillations associated with pure central schemes, especially for long time integration applications such as DNS. For validation purposes, the methods are tested in a DNS of compressible turbulent plane channel flow at low values of friction Mach number, where reference turbulence data bases exist. It is demonstrated that the methods are robust in terms of grid resolution, and in good agreement with published channel data. Accurate turbulence statistics can be obtained with moderate grid sizes. Stability limits on the range of the splitting parameter are determined from numerical tests.
منابع مشابه
Numerical Investigation on Compressible Flow Characteristics in Axial Compressors Using a Multi Block Finite Volume Scheme
An unsteady two-dimensional numerical investigation was performed on the viscous flow passing through a multi-blade cascade. A Cartesian finite-volume approach was employed and it was linked to Van-Leer's and Roe's flux splitting schemes to evaluate inviscid flux terms. To prevent the oscillatory behavior of numerical results and to increase the accuracy, Monotonic Upstream Scheme for Conservat...
متن کاملNumerical Simulation of Turbulent Subsonic Compressible Flow through Rectangular Microchannel
In this study, turbulent compressible gas flow in a rectangular micro-channel is numerically investigated. The gas flow assumed to be in the subsonic regime up to Mach number about 0.7. Five low and high Reynolds number RANS turbulence models are used for modeling the turbulent flow. Two types of mesh are generated depending on the employed turbulence model. The computations are performed for R...
متن کاملOn Skew-Symmetric Splitting and Entropy Conservation Schemes for the Euler Equations
The Tadmor type of entropy conservation formulation for the Euler equations and various skewsymmetric splittings of the inviscid flux derivatives are discussed. Numerical stability of high order central and Padé type (centered compact) spatial discretization is enhanced through the application of these formulations. Numerical test on a 2-D vortex convection problem indicates that the stability ...
متن کاملThe numerical simulation of compressible flow in a Shubin nozzle using schemes of Bean-Warming and flux vector splitting
Over the last ten years, robustness of schemes has raised an increasing interest among the CFD community. The objective of this article is to solve the quasi-one-dimensional compressible flow inside a “Shubin nozzle” and to investigate Bean-Warming and flux vector splitting methods for numerical solution of compressible flows. Two different conditions have been considered: first, there is a sup...
متن کاملOn the High - Order Multidimensional Gas - Kinetic Scheme
The newly developed high-order-accurate multidimensional gas-kinetic scheme is further investigated, including the benefit of the consideration of tangential slopes in the flux function at a cell interface, and the application of the scheme in turbulence simulation. The present study shows that in despite of increasing of computational cost, the multidimensional scheme can evidently improve the...
متن کامل